Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract One of the goals of open science is to promote the transparency and accessibility of research. Sharing data and materials used in network research is critical to these goals. In this paper, we present recommendations for whether, what, when, and where network data and materials should be shared. We recommend that network data and materials should be shared, but access to or use of shared data and materials may be restricted if necessary to avoid harm or comply with regulations. Researchers should share the network data and materials necessary to reproduce reported results via a publicly accessible repository when an associated manuscript is published. To ensure the adoption of these recommendations, network journals should require sharing, and network associations and academic institutions should reward sharing.more » « lessFree, publicly-accessible full text available December 1, 2025
-
OBJECTIVE:To determine biomarkers other than CA 125 that could be used in identifying early-stage ovarian cancer. DATA SOURCES:Ovid MEDLINE ALL, EMBASE, Web of Science Core Collection, ScienceDirect, Clinicaltrials.gov, and CAB Direct were searched for English-language studies between January 2008 and April 2023 for the concepts of high-grade serous ovarian cancer, testing, and prevention or early diagnosis. METHODS OF STUDY SELECTION:The 5,523 related articles were uploaded to Covidence. Screening by two independent reviewers of the article abstracts led to the identification of 245 peer-reviewed primary research articles for full-text review. Full-text review by those reviewers led to the identification of 131 peer-reviewed primary research articles used for this review. TABULATION, INTEGRATION, AND RESULTSOf 131 studies, only 55 reported sensitivity, specificity, or area under the curve (AUC), with 36 of the studies reporting at least one biomarker with a specificity of 80% or greater specificity or 0.9 or greater AUC. CONCLUSION:These findings suggest that although many types of biomarkers are being tested in ovarian cancer, most have similar or worse detection rates compared with CA 125 and have the same limitations of poor detection rates in early-stage disease. However, 27.5% of articles (36/131) reported biomarkers with better sensitivity and an AUC greater than 0.9 compared with CA 125 alone and deserve further exploration.more » « less
-
Faculty at prestigious institutions produce more scientific papers, receive more citations and scholarly awards, and are typically trained at more-prestigious institutions than faculty with less prestigious appointments. This imbalance is often attributed to a meritocratic system that sorts individuals into more-prestigious positions according to their reputation, past achievements, and potential for future scholarly impact. Here, we investigate the determinants of scholarly productivity and measure their dependence on past training and current work environments. To distinguish the effects of these environments, we apply a matched-pairs experimental design to career and productivity trajectories of 2,453 early-career faculty at all 205 PhD-granting computer science departments in the United States and Canada, who together account for over 200,000 publications and 7.4 million citations. Our results show that the prestige of faculty’s current work environment, not their training environment, drives their future scientific productivity, while current and past locations drive prominence. Furthermore, the characteristics of a work environment are more predictive of faculty productivity and impact than mechanisms representing preferential selection or retention of more-productive scholars by more-prestigious departments. These results identify an environmental mechanism for cumulative advantage, in which an individual’s past successes are “locked in” via placement into a more prestigious environment, which directly facilitates future success. The scientific productivity of early-career faculty is thus driven by where they work, rather than where they trained for their doctorate, indicating a limited role for doctoral prestige in predicting scientific contributions.more » « less
An official website of the United States government

Full Text Available